A Nonproprietary Movement Analysis System (MoJoXlab) Based on Wearable Inertial Measurement Units Applicable to Healthy Participants and Those With Anterior Cruciate Ligament Reconstruction Across a Range of Complex Tasks: Validation Study

Jun 1, 2020·
Riasat Islam
,
Mohamed Bennasar
,
Kevin Nicholas
,
Kate Button
,
Simon Holland
,
Paul Mulholland
,
Blaine Price
,
Mohammad Al-Amri
· 0 min read
Abstract
Background: Movement analysis in a clinical setting is frequently restricted to observational methods to inform clinical decision making, which has limited accuracy. Fixed-site, optical, expensive movement analysis laboratories provide gold standard kinematic measurements; however, they are rarely accessed for routine clinical use. Wearable inertial measurement units (IMUs) have been demonstrated as comparable, inexpensive, and portable movement analysis toolkits. MoJoXlab has therefore been developed to work with generic wearable IMUs. However, before using MoJoXlab in clinical practice, there is a need to establish its validity in participants with and without knee conditions across a range of tasks with varying complexity. Objective: This paper aimed to present the validation of MoJoXlab software for using generic wearable IMUs for calculating hip, knee, and ankle joint angle measurements in the sagittal, frontal, and transverse planes for walking, squatting, and jumping in healthy participants and those with anterior cruciate ligament (ACL) reconstruction. Methods: Movement data were collected from 27 healthy participants and 20 participants with ACL reconstruction. In each case, the participants wore seven MTw2 IMUs (Xsens Technologies) to monitor their movement in walking, jumping, and squatting tasks. The hip, knee, and ankle joint angles were calculated in the sagittal, frontal, and transverse planes using two different software packages: Xsens’ validated proprietary MVN Analyze and MoJoXlab. The results were validated by comparing the generated waveforms, cross-correlation (CC), and normalized root mean square error (NRMSE) values. Results: Across all joints and activities, for data of both healthy and ACL reconstruction participants, the CC and NRMSE values for the sagittal plane are 0.99 (SD 0.01) and 0.042 (SD 0.025); 0.88 (SD 0.048) and 0.18 (SD 0.078) for the frontal plane; and 0.85 (SD 0.027) and 0.23 (SD 0.065) for the transverse plane (hip and knee joints only). On comparing the results from the two different software systems, the sagittal plane was very highly correlated, with frontal and transverse planes showing strong correlation. Conclusions: This study demonstrates that nonproprietary software such as MoJoXlab can accurately calculate joint angles for movement analysis applications comparable with proprietary software for walking, squatting, and jumping in healthy individuals and those following ACL reconstruction. MoJoXlab can be used with generic wearable IMUs that can provide clinicians accurate objective data when assessing patients’ movement, even when changes are too small to be observed visually. The availability of easy-to-setup, nonproprietary software for calibration, data collection, and joint angle calculation has the potential to increase the adoption of wearable IMU sensors in clinical practice, as well as in free living conditions, and may provide wider access to accurate, objective assessment of patients’ progress over time.
Type
Publication
JMIR mHealth and uHealth